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The problem of the stability of the position of equilibrium of a multidimensional autonomous Hamiltonian 

system is studied for the critical case of purely imaginary simple roots when the quadratic part of the 

Hamiltonian is not sign-definite and the roots satisfy simultaneously two (or more) resonant fourth-order 

relations [l]. Cases of independent as well as mutually interacting resonances are discussed. The conditions 

of stability and instability of the corresponding normalized system containing terms of up to the fourth order 

inclusive, are formulated. 

CONSIDER the problem of the stability of the stagnation point of an autonomous system of Hamiltonian 
equations defined by the Hamiltonian function H(x, y) = H2 + H3 + . . . , where HI are the lth order forms of 
the variables x = (xi, . . . , xN), y = (yi , . . . , YN), under the assumption that the form is not sign-definite and 
all eigenvalues of its matrix are purely imaginary and differ from each other. As we know [l, 21 the most 
interesting cases are the resonant ones (when there are no resonances we have complete Birkhof stability [2]) in 
which instability may occur, caused by the non-linear terms of the corresponding differential equations. 

We shall consider the case, which has not so far been studied, of a double, fourth-order resonance governed 

by the presence of two integer relations between the eigenvalues +A, (S = 1, . . , N) of the form 

~&&cl=& Q,&=o 

I:Ip,I’ZIpf3i=4 n<N 
(I) 

(pa, pp are mutually prime numbers), or of the form 

P,,A, +PIA, +...+P,&=o, Par% +~P&l=o 

IP,, I+lP, I+...+IPmI=IP*, I+Clpsl=4 
(2) 

Here and henceforth the summation over (Y will be carried out from (Y = 1 to a = m, over p from p = m + 1 to 

p=n,andoveryfromy=n+ltoy=N. 
We shall also assume that relations (1) and (2) will not produce other resonances of the same order. 
It is said that in case (1) the resonances are independent, and in case (2) we have interaction between the 

resonances. Moreover, we shall call a resonance weak if it preserves, when there are no other resonances, the 
stability of the model system (i.e. of the system obtained by discarding, from H, terms of order higher than the 
fourth). Otherwise, we shall call the resonance strong [4, 51. 

Let us consider the case of independent resonances (1). Using the well-known normalization procedure [l-3] 
we shall obtain the following form of a Hamiltonian normalized (to terms of up to the fourth order) in polar 
coordinates rj, 0,: 

(3) 

Here and henceforth the subscripts 1 and j take all values from 1 to N, and the indices a, /3, y have the same 

values as in (1) and (2). 
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The model system corresponding to the Hamiltonian (3) will have the form 

ril . = -2paA, a,rin0,, ri)=-2pgA,fisin9,, r;l=O 

I),-= -A,&Zp&/r,ctis0, - 2xAaJpari 

$I;= -A,&XP~~CQS’#~ - 2ZAPippri 

We shall show that the following theorem holds for system (4) in case (1). 

(4) 

Theorem 1. If amongst the resonances of (1) there exists at least one strong resonance, then the trivial 
solution of system (4) will be unstable. 

Let the variables r, in (4) correspond to a strong resonance. Then assuming all rs = 0 we arrive at a system of 
equations describing a situation with a single resonance which, according to the assumption made above, leads 
to instability. 

We note that the condition of Theorem 1 remains true for any number of resonances. 
Let us now consider the case in which both resonances (1) are weak. Here we must distinguish between two 

types of weak resonance, namely: (a) the weakness of the resonance depends on the sign change amongst the 
components of the resonant vector P = (pl, . . . , p,); (b) all pa and pP are of the same sign and the weakness 
of each resonance is governed by the inequalities [3, 61 

lA,l<lS,l (v=1,2) (5) 

P, = rlp,P*‘2, P, = rIp;fl’2 

In this case the following theorem holds. 

Theorem 2. If both independent resonances of (1) are weak and at least one of them is weak in the sense of 
(a), then the trivial solution of the model system is stable. 

We shall first consider the case when both resonances of (1) are weak in the sense (a), i.e. the sign change 
occurs amongst the components pl, . . . , pm, as well as amongst pm+r , . . . , p,, . Then the system will have the 
integral 

Q = Z-rcrra + Z:flrp+ Err 

(-yO, ys are certain constants), which is sign definite under the conditions of the theorem. Indeed, the 
requirement that the derivative @* vanishes identically leads, for system (4), to the equations 

2: TaPa = 09 hgPf3’0 

which always have a strictly positive solution in -yo, -yp , provided that there is a change of sign amongst the 
numberspi, . . . ,p,,, andp,+r, . . .,pn. 

Suppose now that only one of the resonances of (1) is weak in the sense (a) we can assume without loss of 
generality that the first resonance is the weak one, while for the second resonance we shall have 1 AZ / < ] S, 1. In 
this case system (4) will have the following integrals: 

8 = X-rara + Zrr, Is =rp - (Pp/pm+t)rm+r. H. =K 

from which we shall construct the integral 

G=@‘+I:+...+I;+H: 

which is sign-definite. Indeed, since we have @ = ZP = 0 when r, = rv = 0 and rs = (pp/pm+l)r,,,+l, it follows 
that 

H. = 2(A,cos*, + S,)(r&+r/P&+tlP~ 

whence, taking into account the inequality 1 A2 I< I & 1, we find that G is a positive-definite function. 
The case when both resonances of (1) are weak in the sense (b), i.e. inequality (5) holds for each one of 

them, is more complicated. Let us introduce the notation 

s’=zA ors S 
Pap@* S; =zp,, s; =+ (7) 

P 
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and consider the following versions of the signs of the quantities (4j) and (7): 
1. Si , Sz, S’ are of the same sign. 
2. Si , S, are of the same sign and S’ is of the opposite sign. 
3. Si , S, are of different sign. 
The following assertion holds in the first case. 

Theorem 3. If the model system (4) has two weak resonances, in the sense (b), and there is no change of sign 
amongst the quantities Si , Sz , S’, then the trivial solution of system (4) will be stable. 

It can be confirmed that in this case system (4) will have the follwing integrals: 

is =t6 - zr,, &=r,-e, (P=xr7, H.=H, 
m 

(6=2,... ,m; a=m+2,...,ni 

from which we can construct a sign-definite integral in the form 

G=I;lj+xi;+H: 

Indeed, let 

r, = (P,/F, )I*, ‘(?‘(P&%?z+t)~,+t, ‘7 = 0 

(8) 

then we have I, = I, = Q, = 0 and 

H, = 264,ces*, + S,l(r:/~:)p, + 2S’(r,r,,,+t/prpm+,) + 

+ 2(.4,ces*, iS~)(~~~~/~~+,~P~ 

(9) 

Thus under the condition of Theorem 3 the form does not vanish, except at the origin of coordinates. 
Let us now consider the second case when Si and S, are of the same sign, and S’ is of the opposite sign. Two 

subcases are possible: 

1) s,s, 3 s;s; ; 21 s,s, < s;s; (10) 

Theorem 4. Let two resonances exist in system (4), weak in the sense (b) St&>O, Si S’ ~0. Then the 
necessary and sufficient condition of stability of the trivial solution of system (4) under the first condition of (10) 
will be that the following inequalities hold: 

I S, - A, l/l S; I > I S;’ l/l S, - A, I (11) 

We shall prove the sufficiency with help of the integrals of Theorem 3. Let us rewrite expression (9) in the 
form 

PX+1 H, = (2(A,cos~, + S,)p 
Pt% +1r: 

P, + 2s*+ 
WI 

r: 
f 2(A, cos*, + S, )P, 1-g 

When condition (11) holds, the discriminant of the equation H* = 0 in p1 r m+l/(pm+lrl) is negative, and this 
leads to sign definiteness of the integral (8). 

To prove the necessity we shall consider the opposite inequality to (11) (we note that this can always happen 
if the first condition of (10) holds with the equality sign). Then it can be shown that system (4) has a particular 
solution of the form 

r, = P,6 (0 > rp=pgA,P,sin\Ir:/(P,A,sin~:) 

b(f) > 0, b(i) > 0, *: = const, *Ur: = const 

which proves the instability. 
We prove, in exactly the same manner, the instability in system (4) in the case of the second condition of 

(lo), when the following inequality holds: 

!S, +A, I/IS~I>IS~I/IS~+A~I 

A complete discussion of this subcase, as well as of the case when Si and S, have different signs, requires 
methods different from those given here. 
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We will now consider the case of interacting resonances locked into a single frequency so that relation (2) 
holds. The model system here takes the form (here and henceforth the index S takes all natural values from 2 to 
=) 

Theorem 5. If at least one strong resonance exists amongst the resonances of (2), the trivial solution of system 
(12) will be unstable. 

The proof is exactly the same as in the case of Theorem 1 1 and covers any number of resonances with a single 
common frequency. 

In the case of interacting weak resonance with a single common frequency, the situation becomes more 
complicated than in the case of independent resonances. In this case the sufficient conditions of stability are 
given by the following theorem. 

Theorem 6. If both resonances of (2) are weak in the sense (a), then the trivial solution of system (12) will be 
stable; if, on the other hand, one of the resonances, e.g. the first resonance, is weak in the sense (a) and the 
second is weak in the sense (b), then the trivial solution of system (12) will be stable when there is a sign change 
amongst the numbers pz , . . . , pm in the first resonance. 

The first part of the theorem is proved in exactly the same manner as in the case of independent resonances 
(Theorem 2). 

To prove the stability in the case when the second resonance is weak in the sense (b), i.e. when the inequality 

~S~i~lfA”p;, + 2p,, x:A “pa + I: A~“p~P~~~~* i > I A 1 I (13) 

holds, we shall use the integrals of system (12) 

to construct the integral 

which, according to the condition of the theorem, is sign-definite. Indeed, if the variables vary according to the 

law r, = 0, rfl = (F~/~~+~ )rm.+.l, rl = (p21/pm+l)rm+I so that the integral Cp, Z, ,lrrp vanishes identically, then 
according to (13) we shall have 

H, = (A,e~s*,, + S,)P&t#,,+r 

and hence G is a positive-definite function. 
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A sign-definite criterion of a polynomial of degree m in a cone K { alo, . , CU,,~} of space R” is proposed 

and also a method of investigating these properties based on certain results obtained from Sirazetdinov. 

This enables the solution of the problem of the stability of systems of differential equations with polynomial 

right-hand sides to be simplified. 

1. FORMULATION OF THE PROBLEM 

IN CERTAIN problems of stability (for example, in problems in economics, stability in biological societies, etc.), 
there is no need to use functions with sign-definite properties over the whole of the space R”. For the systems of 
ordinary differential equations which describe these processes, a certain set KC R” is positively invariant. The 
trajectories of the system with initial data from K do not leave its limits as time passes. This set is called a cone, 
it is closed and all its elements possess the following properties: (1) for any xEK it follows that --x e K (x# 
0,O) is zero, and (2) for any a, p > 0 and arbitrary u, v E K it follows that (YU + cw E K. 

Henceforth we will consider the case when the cone coincides with the coordinate angle. We will use the 
notation [l] K { alo, . . . , (Y,,~}, aio~No = (-1, l}. Here {trio}, (i = 1, . . , n) is the basis of the cone K. In this 
case 

aiO=SignXi(Xi#O), i=l,...,n; OLjoyi > 0 

If the problem involves considering a system of ordinary differential equations whose trajectories do not 
leave the limits of the cone as time passes, then when solving the problem of the stability of this system there is 
no need to use as the function a Lyapunov function that is sign-definite over the whole of space. It is sufficient 
for it to possess this property solely in the cone K. 

Hence, the problem arises of investigating the sign-definite properties of different functions, in particular, 
homogeneous polynomial-forms in a certain cone K of space R”. 
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